

Gaussian 09 Revision D.01 发布说明

*新特性与用法说明: Rev D.01

- ◆ Raman 和 ROA 光谱振动强度可以独立地由力常数和简则振动模的计算得到, [Cheeseman11a]的这个建议使得当使用大基组计算这些性质时变得更容易。关键词 Polar=Raman(或者 Polar=ROA)表示力常数从 checkpoint 文件中提取(例如,从之前的 Freq 计算中得到),并且计算新的极化率导数(以及 ROA 光谱涉及到的另外两个张量),通过这两个步骤组合从而预测光谱及其强度。测试文件 test931 提供了一个两步 ROA 计算的实例。
- ◆ Freq=Anharmonic 进行非谐振频率计算时的 output 文件中包含了 IR 强度。output 文件本版本可读性更强。
- ◆ 本版本 TD-DFT 计算可以使用 Tamm-Dancoff 近似方法,关键词为 TDA。
- ◆ CIS 和 TD 激发能计算时能够定义能量范围,适用于 CIS、TD、TDA 方法:

GOccSt=N	仅使用 N 个活性占据轨道以及更高占据轨道生成初始猜测。
GOccEnd=N	如果 N>0,仅使用前 N 个活性占据轨道生成初始猜测;如果 N<0,
	则不使用最高占据的 N 个轨道进行初始猜测。
GDEMin=N	当激发态能量≥N/1000 eV 时产生猜测。
DEMin=N	仅当激发态能量≥N/1000 eV 时判定收敛;如果 N=-2,从 input 文件
	中读入阈值;如果 N<-2,则设定阈值为 N /1000 Hartrees。
IFact=N	初步迭代后给指定的态定义一个因子。
WhenReduce=M	M 次迭代后把态数目降低到期望值。

IFact 默认值为 *Max*(4,g), *g* 为 Abelian 点群的阶数。TD 计算时 WhenReduce 默认值为 1, 而 TDA 和 CIS 计算 时 WhenReduce 默认值为 2。如果感兴趣的区域有很多的态则需要指定更大的值。

- ◆ 新增一些列新 DFT 泛函以及两个半经验色散模型:
 - EmpiricalDispersion=PFD、GD3、GD3BJ 显示考虑 Petersson-Frisch 色散[Austin12]、Grimme 的 D3 [Grimme10] 以及 D3BJ [Grimme11]色散项。
 - ▶ APFD 使用 Austin-Frisch-Petersson 泛函(包含色散[Austin12]), APF 则表示使用无色散项的 Austin-Frisch-Petersson 泛函。
 - ▶ B97D3、B2PLYPD3 表示泛函中加入 Grimme 的 D3BJ [Grimme11]色散项。
 - ▶ HISSbPBE 使用 HISS 泛函[Henderson08]。
 - SOGGA11[Peverati11]、M11[Peverati11a]、SOGGA11X[Peverat11b]、M11L[Peverati12]、MN12L[Peverati12c]、 N12[Peverati12b]、N12SX[Peverati12a]、MN12SX[Peverati12a]使用 Truhlar 小组最近开发的一系列泛函。
- ▶ 新增 augmenting cc-pV*Z 基组一系列选项:
 - ▶ spAug-cc-pV*Z 仅增加 s,p 弥散函数,包括对 H 和 He 增加 s 函数。
 - ▶ dAug-cc-pV*Z 每一个角动量函数增加为 2 层,此前为一层。
 - ▶ 增加 Truhlar 的"日期(Calendar)"基组变体[Papajak11]。这一系列基组的命名来自于 cc-PV*Z 基组加上极化 函数得到的,也就是大家熟知的 Aug-cc-pV*Z。Truhlar 评论道,"Aug"也是英文中 August 的缩写形式,因此他提出新的 augmentation 基组系列以月份来命名。比如,Jul-cc-pV*Z 弥散基组增加函数到 L-1,此处 L 为所使用极化函数的最高角动量。类似的,Jun-cc-pV*Z 弥散基组增加函数到 L-2, May-cc-pV*Z 弥散基组增加函数到 L-3,以及 Apr-cc-pV*Z 弥散基组增加函数到 L-4。

此处请注意,为了避免不一致,默认情况下是总是包含 s,p 弥散函数的。但是它又有别于 Truhlar 等人最初的定义。可以使用 TJul、TJun 等形式来指定最初的版本(无条件限制),例如 TJun-cc-pVDZ 仅增加 s

函数给 Cl,而同时增加 s,p 函数给 Fe 和 Br。

- ◆ 对于 MM 和 ONIOM(MO:MM)计算,新增对输入文件的初步分析。对 MM 电荷给出的电荷分布进行报告。如 果输入文件中包含 PDB 信息,则会报告 residues 的净 MM 电荷,即为 ONIOM 分层中的净 MM 电荷。
- ◆ 新增 SCF 选项及新特点:
 - ➤ SCF=Big 关闭可选的步骤 O(N³)来加速大型计算(>5000 基函数)
 - SCF=Restart 当重启 SCF 计算时跳过不必要的步骤,但是不跳过那些必须的步骤,如以不同基组从之前计算读入猜测或者不同的几何构型这类情况。相反,如果你想从一个不同的几何构型或者(和)不同基组重启 SCF 计算,请使用 Guess=Restart。
 - ➢ SCF=YQC 当计算非常大的分子而又难以收敛时,此选项很有用。此方法开始和 SCF=QC 一样使用 最陡下降法(SD),然后使用经过校正的最陡下降法,但是最后使用常规 SCF 方法而不是二次收敛方法, 二次收敛方法仅在 SCF 收敛失败时推荐使用。
 - ▶ SCF=MaxNR=N 设置启用二次收敛方法的阈值, 10^{-N}。默认值为 10⁻²。
 - ▶ 常规 SCF 方法现在对于任意角动量函数都适用。这对于外部程序来说显得尤为重要。Gaussian 09 中默 认使用的直接 SCF 方法仍是推荐选项。
- ◆ 提供一种新的、大格点积分方法, Int=SuperFineGrid。这比 UltraFine 格点大 3 倍, 期望得到高精度数值时可 启用。此种格点为周期表前两排元素设置的格点为(150,974), 之后的元素为(225,974)
- ♦ 原子电荷:
 - ▶ 提供 CM5 原子电荷[Marenich12]。
 - 计算得到的原子电荷能够储存于 checkpoint 文件中,并可用于之后的 MM 计算(使用关键词 Geom=Check)。Pop=SaveMulliken、Pop=SaveESP、Pop=SaveNPA、Pop=SaveCM5 等等可存储相应的电荷 到 checkpoint 文件中。在多层 ONIOM 计算中,仅有指定计算电荷的部分默认保存,例如 QM 层中的原 子电荷。任何在输入文件中指定的原子电荷将不会被采用,取而代之的是新拟合的电荷。 附加选项 Uncharged 将保留输入文件中的原子电荷并且仅会对 QM 层中的未指定电荷原子进行电荷拟合。 组合选项 Pop=(Uncharged,SaveMulliken)、Pop=(Uncharged,SaveCM5)等等将保存原始电荷以及新拟合的 电荷。
 - ▶ 使用新版本 QEq 进行电荷计算[Rappe07]。OldQEq 表示使用旧版本进行电荷计算,这是 Rev C 的默认项。 QEq=Uncharged 仅给 MM 电荷等于 0 的原子赋值 (本版本已可以正确指定),而其它原子保持已给定的 值。
- ◆ 提供 NBO 6 版本的接口。Pop=NPA6、Pop=NBO6、Pop=NBO6Read 以及 Pop=NBO6Delete 关键词表示通过外 部接口使用独立的 NBO6 程序。使用 NBO6 的脚本可以从 Frank Weinhold 教授处得到(<u>nbo6.chem.wisc.edu</u>)。
- ◆ Freq=NoPrintNM 关闭频率计算中简则振动模的输出。每个简则振动模的频率值以及强度仍旧保留。
- ◆ External 表示在 Gaussian 09 中运行其它的程序。D.01 版本这一功能得到大大提升。此版本可以提供单电 子、双电子积分以及其它的矩阵元给外部程序,并且可以重新获得其它程序得到的分子轨道或者密度。更多 的细节和实例可以查看 g09/doc 子文件夹(Windows 系统 doc 文件夹)新的 External 关键词选项(必须跟在 脚本名后)如下:
 - InUnf
 需提供一个包含坐标和单电子矩阵元的未格式化的 Fortran 文件给外部程序,具体请参考

 g09/doc/unfdat.txt 和 g09/doc/rdmat.F 文件。1Elintegrals 是这个选项的同义词。
 - 2Elintegtrals 需提供一个包含双电子积分,未格式化的 Fortran 文件。这一选项意味着将同时使用 SCF=Conventional。
 - **InputFchk** 提供一个 formatted chkeckpoint 文件给外部程序。
 - OutputUnf 提供一个未格式化的 Fortran 文件给外部程序,并且一个有着相同结构的更新或者替代文件将 会被 G09 读入,用以替代外部程序或脚本的默认输入文件。
 - **IOFchk** 生成一个 formatted chkeckpoint 文件,用以提供给外部程序并且一个新的 .fchk 结果文件将

会被 Gaussian 09 读入。

ReadInputSection 此选项用于改变 Gaussian 09 自动生成的提供给外部程序的输入文件的内容。当 Gaussian 09 与外部程序的文件传输方式被之前的选项定义好时(如 IOFchk),就不再需要默认的外部 文本输入。此部分的文本将会被外部文本输入文件替代,而不是常规文件类型。这样做可以 为外部程序提供更加便捷的额外说明。

测试文件 test769 就是这些选项的一个实例。

- ▶ 多个第三方程序所需要的数据文件可以通过以下方式生成:
 - ➢ SCRF=COSMORS 生成 COSMO/RS 以及其它程序需要的数据文件。
 - ▶ Pop=MK IOp(6/50=1) 生成 Antechamber 数据文件(AMBER 程序中用于生成 RESP 荷)。
 - ▶ NMR=CSGT IOp(10/93=1) 生成 ACID 程序的数据文件。
- ◆ 新的 Default.Route 命令:

-U- 使用应用程序时默认使用内存,如 formchk、freqchk。

- -F- formchk 的默认文件理性参数。
- -M- 默认内存(与%Mem 意义等同)

-L- Linda 默认选项(传递给环境变量 GAUSS_LFLAGS)

-**R**- 与-#-同义

所有以上的选项都可以通过环境变量或者 Unix 命令来设置。环境变量 GAUSS_XDEF 提供了与在 Default.Route 文件中 -X- 等同的一行。类似地,命令 g09 -x="value" 也给出相同的定义。例如,以下的定义都生成同一 个效果:

-M- 4GB Default.Route

Export GAUSS_MDEF=4GB

g09 –m="4GB" …

上述命令的优先级依次为:命令行定义、环境变量、Default.Route、程序内部默认值。

- ◆ Geom=NGeom=N 从 checkpoint 文件中取得几何优化中第 N 个点的结构(与 GaussView 中显示的顺序一致, 此处 N=1 时意味着获取最初输入文件中的分子结构)。Geom=Step=M 如果之前的优化使用了冗余内坐标则 自动转为 Geom=NGeom=*M*+1。
- ◆ Geom=Connectivity 关键词下可以使用键级为 0.1 的设定来定义一个化学键,定义的化学键用于生成内坐标, 但它不影响分子力学输入文件的原子类型或者键连关系。
- ◆ 新的 Link0 命令:

Geom=SkipAll

%UseSSH Linda 并行时使用 ssh 通讯而不是 rsh。

%DebugLinda 报告 Linda 并行时开始和结束的细节。

- ◆ 有效势 def2 或者同义词 QZV 可以使用 GenECP 关键词来读入赝势以及定义 def2 和 QZV 基组。
- ◆ 避免生成各种类型的内坐标:
 - 不自动生成任何内坐标; 全部坐标必须显示地定义在输入文件部分

(Geom=ModRedundant)。

Geom=SkipAng生成键长但不生成键角和二面角。Geom=SkipDihedral不生成二面角。Geom=SkipHBond不生成氢键坐标。

- ◆ IRC=GradientOnly 现在默认使用 EulerPC 而不是 DVV。使用
- 时可以间断地得到解析二阶梯度,即在最初构型下计算二阶梯度,然后每过 N 步 predictor 和 M 步 corrector 再计算一次。
- ◆ 程序运行效率改进:
 - > 现在使用 CIS 和 TD 计算时能够更有效的利用对称性。

- 在计算储存于内存中的双电子积分时使用对称性匹配基函数,当对称性存在时可以加速计算以及减少内存的占用。
- ▶ Force=Nostep 当计算大体系 MM 作用力计算时,用于在几何优化时避免 O(N³)的计算量。
- ◆ 输入文件中的小修改:
 - ▶ 修改了 DFTB 方法输入文件的兼容性。具体细节可参考 http://www.gaussian.com/g_tech/g_ur/k_dftb.htm
 - ▶ Scratch 文件扩展名 .scr 已变成 .skr,此处修改用于避免 Windows 下杀毒软件扫描造成的问题。
 - ➢ Unix 以及 Mac OS X 版本下,如果没有指定后缀名,Gaussian 09 程序会优先寻找后缀名为 .gjf 的输入文件;如果没有发现以 .gjf 为后缀的文件,则会继续寻找以 .com 为后缀的文件。
 - ➢ Opt=ModRedundant 不再支持指定一个特定的初始值。取而代之的是输入结构需给出所期望的初始值, 并且坐标定义中不需要输入此值。
 - Freq=AnHarmonic 这一附加选项的格式已经更改。具体请参考 Frequency 关键词中 Freq=ReadAnHarmon 的附加输入部分。

http://www.gaussian.com/g_tech/g_ur/k_freq.htm

 \triangleright

*更新文献列表

Austin12	A. Austin, G. A. Petersson, M. J. Frisch, F. J. Dobek, G. Scalmani and K. Throssell, "A density functional
	with spherical atom dispersion terms," JCTC 8 (2012) 4989-5007.
Boese02	A. D. Boese and N. C. Handy, "New exchange-correlation density functionals: The role of the
	kinetic-energy density," J. Chem. Phys. 116 (2002) 9559-69.
Cammi00a	R. Cammi, C. Cappelli, S. Corni and J. Tomasi, "On the calculation of infrared intensities in solution
	within the polarizable continuum model," J. Phys. Chem. A 104 (2000) 9874-79.
Cheeseman11a	J. R. Cheeseman and M. J. Frisch, "Basis set dependence of vibrational Raman and Raman optical
	activity intensities," JCTC 7 (2011) 3323-3334.
Clemente08	F. Clemente, T. Vreven and M. J. Frisch, in Quantum Biochemistry, Ed. C. Matta (Wiley VCH, 2008).
Collins02	M. A. Collins, "Molecular potential-energy surfaces for chemical reaction dynamics," Theor. Chem. Acc.
	108 (2002) 313-24.
Fukui81	K. Fukui, "The path of chemical-reactions: The IRC approach," Acc. Chem. Res. 14 (1981) 363-68.
Grimme10	S. Grimme, J. Antony, S. Ehrlich and H. Krieg, "A consistent and accurate ab initio parameterization of
	density functional dispersion correction (DFT-D) for the 94 elements H-Pu," J. Chem. Phys .132 (2010)
	154104.
Grimme11	S. Grimme, S. Ehrlich and L. Goerigk, "Effect of the damping function in dispersion corrected density
	functional theory," J. Comp. Chem. 32 (2011) 1456-65.
Henderson08	T. M. Henderson, A. F. Izmaylov, G. E. Scuseria and A. Savin, "Assessment of a middle range hybrid
	functional," JCTC 4 (2008) 1254.
Henderson09	T. M. Henderson, A. F. Izmaylov, G. Scalmani and G. E. Scuseria, "Can short-range hybrids describe
	long-rangedependent properties?" J. Chem. Phys. 131 (2009) 044108.
Hu07	H. Hu, Z. Lu and W. Yang, "Fitting Molecular Electrostatic Potentials from Quantum Mechanical
	Calculations," JCTC 3 (2007) 1004-13.
Izmaylov06	A. F. Izmaylov, G. Scuseria and M. J. Frisch, "Efficient evaluation of short-range Hartree-Fock exchange
	in large molecules and periodic systems," J. Chem. Phys. 125 (2006) 104103: 1-8.
Marenich09	A. V. Marenich, C. J. Cramer and D. G. Truhlar, "Universal solvation model based on solute electron

	density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface
	tensions," J. Phys. Chem. B 113 (2009) 6378-96.
Marenich12	A. V. Marenich, S. V. Jerome, C. J. Cramer and D. G. Truhlar, "Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and
	Condensed Phases," JCTC 8 (2012) 527.
Papajak11	E. Papajak, J. Zheng, H. R. Leverentz and D. G. Truhlar, "Perspectives on Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions," <i>ICTC</i> 7 (2011) 3027
Peverati11	 R. Peverati, Y. Zhao and D. G. Truhlar, "Generalized Gradient Approximation That Recovers the Second-Order Density-Gradient Expansion with Optimized Across-the-Board Performance," <i>J. Phys. Chem. Lett.</i> 2 (2011) 1991-1997.
Peverati11a	R. Peverati and D. G. Truhlar, "Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation," <i>J. Phys. Chem. Lett.</i> 2 (2011) 2810-2817.
Peverati11b	R. Peverati and D. G. Truhlar, "A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry," <i>J. Chem. Phys.</i> 135 (2011) 191102.
Peverati12	R. Peverati and D. G. Truhlar, "M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics," <i>J. Phys. Chem. Lett.</i> 3 (2012) 117-124.
Peverati12a	R. Peverati and D. G. Truhlar, "Screened-exchange density functionals with broad accuracy for chemistry and solidstate physics," <i>Phys. Chem. Chem. Phys.</i> 14 (2012) 16187.
Peverati12b	R. Peverati and D. G. Truhlar, "Exchange–Correlation Functional with Good Accuracy for Both Structural and Energetic Properties while Depending Only on the Density and Its Gradient," <i>JCTC</i> 8 (2012) 2310-2319.
Peverati12c	R. Peverati and D. G. Truhlar, "An improved and broadly accurate local approximation to the exchange–correlation density functional: The MN12-L functional for electronic structure calculations in chemistry and physics," <i>Phys. Chem. Chem. Phys.</i> 10 (2012) 13171.
Rappe07	A. K. Rappé, L. M. Bormann-Rochotte, D. C. Wiser, J. R. Hart, M. A. Pietsch, C. J. Casewit and W. M. Skiff, "APT: A next generation QM-based reactive force field model," <i>Mol. Phys.</i> 105 (2007) 301.
Zhao05	Y. Zhao, N. E. Schultz and D. G. Truhlar, "Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions," <i>J. Chem. Phys.</i> , 123 (2005).
Zhao06	Y. Zhao, N. E. Schultz and D. G. Truhlar, "Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions," <i>JCTC</i> 2 (2006) 364-82.
Zhao06a	Y. Zhao and D. G. Truhlar, "A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions," <i>J. Chem. Phys.</i> 125 (2006) 194101: 1-18.
Zhao06c	Y. Zhao and D. G. Truhlar, "Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States," <i>J. Phys. Chem. A</i> 110 (2006) 13126-30.

*Gaussian 09 D.01 及 C.01 bug 修正:

◆ DFTB 方法下对于 Cu 和 Zn 原子设定基组时的问题已得到解决。

- ◆ 后自洽场方法计算时生成 .wfx 文件出现问题的情况已经得到解决。此文件相关的其它问题也都得到解决。
- ◆ 使用 QZVP 基组及计算重原子时能够正确建立和使用相应的 ECP。
- ◆ 输入文件中比 k 壳层大的角动量已能够正确解析。
- ◆ 应用程序 cubegen 已能够正确的产生 Laplacian 和 ROHF 密度,并且在指定基组和纯泛函情况下它可以正确地 计算流密度。
- ◆ Freq=DoTemp 己可用。
- ◆ 激发态计算时 50-50 选项的两个 bug 已经修复。
- ◆ Pop=SaveNTO 选项的 bug 已经修复(不需要再指定 IOP(6/22=-14))。
- ◆ 由于格式更改导致的 GaussView 5 无法读取 Gaussian 09 C.01 版本计算冗余内坐标和 ONIOM 输出文件的 bug 已经修复。
- ◆ Freq=Anharmonic 在鞍点时输出熵内容的 bug 已经修复。
- ◆ G09 Rev. C. 01 64-bit Windows 版本在使用 post-SCF 方法时的内存 bug 已得到修复。
- ◆ Opt=QST2 及 Opt=QST3 方法下由于冻结原子产生的问题已经修复。
- ◆ 在输入文件中(**Prop=Read**)一系列给定的点 ESP 进行电荷拟合(**Pop=MK**)和静电性质输出组合时的 bug 已经修复。
- ◆ SCF=QC、SCF=SD及 SCF=SSD 等线性搜索方法中错误的初始能量设置问题已经得到解决。
- ◆ ONIOM 计算时 ECP 读入问题已经得到解决。
- ◆ 限制性开壳层(RO)下使用 formchk 的 bug 已经得到解决。总密度和自旋密度已经能够正确的保存在 formatted checkpoint 文件中。